Mostrando entradas con la etiqueta Agua. Mostrar todas las entradas
Mostrando entradas con la etiqueta Agua. Mostrar todas las entradas

lunes, 30 de julio de 2012

FLUIDOTERAPIA EN PACIENTES CRITICOS


El agua resulta esencial para la sobrevida, mantenimiento y funcionamiento del organismo, por lo que en pacientes en condición crítica la terapia con fluidos es la piedra angular en el tratamiento de aquellos pacientes severamente deshidratados.

La terapia de fluidos permite tratar la deshidratación, la hipovolemia, los trastornos electrolíticos y algunas anormalidades de medio interno. Por medio de esta terapia se permite corregir el intercambio de agua desde el espacio vascular al espacio intersticial, la regulación de la presión sanguínea
y la hemodinamia en general, el equilibrio de electrolitos, pH sanguíneotisular, e incluso regular la temperatura corporal.

En la actualidad existe una gama y variedad enorme de fluidos a disposición de los clínicos, como también existe una gran gama de recomendaciones para efectuar la terapia de fluidos, tanto como en el tipo de fluido, el volumen a administrar, la velocidad de administración e incluso la vía de administración. Como regla general se recomienda hoy día realizar una terapia de fluidos individual basada en reglas generales, para luego monitorear cuidadosamente la evolución y respuesta del paciente a esa
terapia. En este apunte se aborda algunas de esas reglas generales en
relación a cuadros específicos que requieren terapia de fluidos como una
parte fundamental de la terapia medica.

Tipos de fluidos:

Los fluidos pueden clasificarse en cristaloides y coloides. En términos generales, las soluciones cristaloides contienen electrolitos capaces de entrar a todos los compartimentos corporales (vascular, intersticial e intracelular). Las soluciones coloidales contienen sustancias de alto peso molecular, que quedan restringidas al compartimento vascular; tienen influencia osmótica, lo que se traduce en entrada de agua a la red vascular, y consecuentemente, aumento de la presión y volemia.


Los coloides son los fluidos de elección, para ser administrados en shock hipotensivo, y en casos de severa hipoalbuminemia (< 1,5 g/dl). Dentro de las sustancias coloidales, las más utilizadas son: plasma (plasma congelado o plasma fresco congelado), gelatinas (Haemacell) y polisacáridos
(Dextran 40, Dextran 70, Hetastarch).
En nuestra práctica diaria, debemos tratar pacientes con distintos cuadros clínicos, que presentan necesidades individuales de reposición de fluidos. A continuación detallo brevemente, los sueros cristaloides de elección en el tratamiento de los principales signos y cuadros clínicos a los que nos vemos enfrentados.

Fluidoterapia en Enfermedades Gastrointestinales:


El tracto gastrointestinal es de vital importancia en la mantención del normal balance de fluidos y electrolitos corporales. Aproximadamente el 75% de los fluidos que ingresan al tracto gastrointestinal (GI) se derivan de secreciones gastrointestinales, más que de la ingesta diaria. Por lo tanto, cualquier patología del tracto digestivo que involucre la pérdida o secuestro de fluidos ricos en electrolitos, alterará rápidamente el balance corporal.

Vómitos:
Las consecuencias metabólicas varían dependiendo del volumen y composición de los fluidos eliminados, y de la frecuencia de su presentación. Usualmente, vómitos leves-moderados, de corta duración no producen
desbalances de ácido-base y/o electrolíticos importantes. La principal y más frecuente anormalidad, es la deshidratación debida a la pérdida de grandes volúmenes de fluidos; y a la incapacidad de beber agua en cantidad suficiente, para suplir las necesidades de mantención.

La hipokalemia es una de las anormalidades electrolíticas más importantes frente a vómitos severos y frecuentes, debido a que las secreciones gástricas son ricas en potasio (10-20 mEq/lt.).
Este cuadro puede verse agravado por anorexia (no ingesta de potasio), y por mecanismos renales que tienden a revertir la deshidratación. Por ejemplo: la aldosterona, liberada en respuesta a la deplesión de volumen, actúa sobre el túbulo distal promoviendo la reabsorción de sodio (intercambiándolo por potasio).

Hipocloremia ocurre secundario a vómitos, por la pérdida directa de secreciones ricas en cloro. Una severa hipokalemia, puede exacerbar la hipocloremia, debido a la reducción en la reabsorción de fosfato, a nivel del

túbulo distal.

Hiponatremia podría producirse, en forma secundaria, a la liberación de hormona antidiurética, la cual produce un aumento en la reabsorción de agua en los ductos colectores. El reemplazo de los déficits de fluidos, por agua de bebida (libre de electrolitos) puede aumenta la hiponatremia.
Los desbalances ácido-base que se producen en forma secundaria a
vómitos persistentes, pueden manifestarse como alcalosis metabólica o
acidosis metabólica.

La alcalosis metabólica se debería a la pérdida neta de ácido clorhídrico, y sería la consecuencia metabólica, teóricamente, más lógica. Sin embargo, lo más frecuente de observar es acidosis metabólica, debido
a una pérdida de iones bicarbonato (contenido duodenal), deshidratación, azotemia pre-renal y acidosis láctica (asociada a hipoperfusión e hipoxia). Para la elección de un suero a administrar, lo ideal sería medir las concentraciones séricas de potasio, sodio, cloro, pH, presión de dióxido de carbono (PCO2). En ausencia de esta información, los sueros de elección frente a vómitos profusos y frecuentes, son sueros Ringer-Lactato y Poliiónico; principalmente por suplir potasio.

Diarrea:
En cuadros de diarrea, el volumen fecal, tipo de electrolitos y alteraciones ácido-base, están influenciados por la duración, severidad y mecanismos que producen la diarrea. La deshidratación es una de las complicaciones metabólicas más frecuentes, y puede incluso llevar a falla circulatoria, shock y muerte. Los
mecanismos fisiopatológicos de la diarrea, influyen en el tipo de desbalance electrolítico. Por ejemplo, hipernatremia es más probable en cuadros de diarrea osmótica, más que secretoria.
La diarrea secretoria (por enterotoxinas bacterianas) se asocia a pérdidas isotónicas de volumen (sodio y potasio principalmente).


En diarrea osmótica, además del sodio, otros solutos atrapan agua en las fecas. Una desproporcionada pérdida de agua, con relación al sodio, puede producir hipernatremia. Las diarreas secretorias producen mayores pérdidas de fluidos y electrolitos, comparadas con otros tipos de diarrea.
Independientemente del tipo de diarrea, la hipokalemia es el disturbio electrolítico más común; por lo tanto los fluidos de elección son Ringer Lactato y Poliiónico.

Pancreatitis aguda:
Los desbalances electrolíticos presentes en cuadros de pancreatitis aguda se atribuyen a pérdidas asociadas a vómitos y secuestro de fluidos en las asas intestinales. Puede producirse hipokalemia e hiponatremia, e incluso en algunos casos, hipocalcemia leve o moderada.
El fluido de elección, en el tratamiento de pancreatitis aguda, es Ringer-Lactato porque proporciona ambos electrolitos y además, es un agente alcalinizante.

Insuficiencia hepática (aguda y crónica):
En falla hepática aguda, las concentraciones séricas de electrolitos tienden a mantenerse en rangos normales. En falla hepática crónica las alteraciones más comunes son hipokalemia e hipernatremia.
Los sueros de elección son isotónicos y limitados en el contenido de lactato. Es recomendable la suplementación con cloruro de potasio (20 - 30 mEq/lt), especialmente en los cuadros crónicos. Mantener los niveles de potasio dentro de los valores normales, contribuye a evitar la encefalopatía hepática; y especialmente en el caso de los gatos, las miopatías.
Es muy importante utilizar sueros glucosados (5% y/o 10%) para minimizar el trabajo hepático, con relación al metabolismo energético. En algunos casos puede presentarse hipoglicemia como reflejo de sepsis,
endotoxemia y/o incapacidad de movilizar reservas hepáticas de glicógeno.

Insuficiencia Renal Aguda o Crónica descompensada:

Aunque no es un signo patognomónico, los pacientes que cursan con daño renal masivo agudo o reagudizado, presentan anuria u oliguria. El realizar fluidoterapia adecuada y agresiva, además de intentar revertir el cuadro, en muchas ocasiones ayuda a diferenciar pacientes con falla prerenal (Ej deshidratación o hipotensión severa). Ante la posibilidad de que el paciente anúrico u oligúrico, presente hipernatremia concomitante, el suero de elección es el glucosalino (glucosa 2,5% y cloruro de sodio 0,45%), a un ritmo de 90 ml/kg/hr. Si es posible no utilice sueros Ringer-Lactato o Poliiónico, debido a que ambos contienen
potasio, y frecuentemente este tipo de pacientes presentan hiperkalemia. El paciente debe ser monitoreado constantemente, especialmente en su capacidad de producir orina. Lo anterior, con el objeto de evitar
sobrehidratación, edema pulmonar y sobrecarga cardíaca. Para cuantificar la producción de orina, inserte una sonda uretral y considere oliguria si la producción de orina es < 0.25 ml/kg/hr.

Si no se verifica micción dentro de la primera hora de rehidratación agresiva, emple diuréticos del tipo Furosemida (2 - 6 mg/kg/8 hrs) vía endovenosa. Si el paciente no aumenta su producción de orina por sobre los 2 ml/kg/hr; considere la administración conjunta de furosemida y dopamina.
La dosis de dopamina recomendada es de 5 ug/kg/min vía endovenosa. Al diluir 250 mg de dopamina en 500 ml de suero, se obtiene una concentración de 50 ug/ml, es decir la dosis para un paciente de 10 Kg de peso, en cada ml de suero que se administre. Ahora sólo restará, dependiendo del equipo de infusión utilizado (adulto o pediátrico), calcular el número de gotas que equivalen a 1 ml, e infundirlo en un minuto. Teniendo clara nuestra elección del suero a administrar a un paciente específico, en base a la fisiopatología de la enfermedad que presenta, debemos calcular la cantidad, frecuencia y velocidad de su administración.
Para calcular la cantidad diaria de fluidos que debe administrar a su
paciente considere: Porcentaje de deshidratación clínica:



Porcentaje Signos Clínicos
deshidratación
< 5 % No detectable
5 – 6 % Leve pérdida de elasticidad cutánea
6 – 8 % Claro retardo en el retorno del pliegue cutáneo

Leve aumento del tiempo de llene capilar
Ojos levemente hundidos en sus órbitas
Mucosas pueden estar secas
10 – 12 % Pliegue cutáneo no retorna a su posición

Marcado retardo en el tiempo de llene capilar
Ojos claramente hundidos en sus órbitas

Mucosas secas
Probables signos de shock (taquicardia, extremidades
frías, pulso rápido y leve)
12 – 15 % Signos marcados de shock
Muerte inminente



A) Deshidratación: Para calcular la cantidad de fluidos a reponer por concepto de deshidratación (reposición de pérdidas) aplique la siguiente fórmula:
% de deshidratación X Peso Paciente (kg) = litros
B) Mantención: Para el cálculo de los fluidos de mantención, que deben ser
suministrados diariamente, considere: 40 - 60 ml/kg/día
, asumiendo el valor inferior en pacientes adultos y de talla grande, y el
valor superior en cachorros y animales pequeños.
C) Pérdidas: Idealmente, para calcular la cantidad de fluidos a reponer por
concepto de pérdidas (Ej vómitos, diarrea, micción, etc.), estos debieran ser
medidos por algún sistema estandarizado. Un buen método, es cubrir el piso
de la jaula con material absorbente y al momento de cambiarlo, pesarlo
para calcular, en forma aproximada el volumen de pérdidas. De no ser
posible lo anterior, se puede asumir una pérdida promedio de 30 - 40
ml/kg/día.
Resumiendo, para calcular la cantidad total de fluidos a administrar a un
paciente, debemos sumar la cantidad de fluidos a reponer por concepto de
deshidratación que presenta, mantención y pérdidas. Posteriormente, en
forma diaria, será necesario reevaluar el grado de deshidratación clínica y
pérdidas, para modificar la cantidad de fluidos a entregar.
Cuando ya hemos calculado el volumen total de líquidos a reponer,
durante el primer día de tratamiento, debemos calcular la velocidad de
administración de estos fluidos en 24 horas. En el caso de un paciente en
estado de shock, la velocidad de administración de fluidos puede ser tan
rápida como 80 - 90 ml/kg/hora (perros) y 50 - 55 ml/kg/hora (gatos).
Sin embargo, en pacientes más estables la velocidad de infusión debe ser
menor para permitir una adecuada redistribución del líquido suministrado.
En promedio, la velocidad de administración de cristaloides ideal es 30 -
40 ml/kg/hora.

Los equipos de infusión de sueros, que se comercializan en nuestro país,
son de uso humano y tienen dos presentaciones:
- adulto: 10 - 20 gotas equivalen a 1 ml

- pediátrico: 60 gotas equivalen a 1 ml
En el Hospital de la Facultad de Ciencias Veterinarias de la Universidad
de Chile, utilizamos los equipos de infusión pediátricos en la fluidoterapia de
gatos y perros < de 10 Kg de peso; y en forma obligatoria, en la
fluidoterapia de cachorros felinos y caninos.
Para llevar un buen control de los fluidos administrados y evitar errores
de sub o sobredosificación, es necesario realizar los cálculos de los fluidos a
administrar diariamente, expresando esa cantidad en ml/día; ml/hora y
gotas/minuto. Esto que pareciera ser engorroso inicialmente, con la práctica
se hace más fácil de calcular y les evitará el riesgo de producir edema
pulmonar por una administración excesiva y/o a alta velocidad; o en el caso
contrario, retardar el efecto terapeútico de la fluidoterapia, por una
subestimación de ella.
Una buena forma de controlar la velocidad de infusión es colocar una
cinta de papel adhesivo en la botella de suero, y marcar en ella la cantidad
de suero que debe ingresar cada 30 minutos o 60 minutos.
En la administración constante y frecuente de fluidos, es ideal la
utilización de bránulas intravenosas. Si estos dispositivos son
adecuadamente insertos y controlados pueden permanecer viables hasta por
tres días. Para lograr esto es conveniente revisar, al menos 3 veces al día,
los vendajes y la presencia de edema subcutáneo.
Para mantener la permeabilidad del catéter, este debe ser lavado con
una solución de heparina (1.000 UI/250 - 500 ml de suero fisiológico) 2 a 3
veces al día.










jueves, 14 de junio de 2012

FLUIDOTERAPIA INTRAVENOSA EN URGENCIAS Y EMERGENCIAS


I. INTRODUCCIÓN.
La Fluidoterapia intravenosa constituye una de las medidas terapéuticas más
importantes y frecuentemente utilizada en Medicina de Urgencias y Emergencias. Su objetivo
primordial consiste en la corrección del equilibrio hidroelectrolítico alterado, hecho habitual
en pacientes críticos. Su utilización constituye un arsenal terapéutico de vital importancia en
Cuidados Críticos, siendo tradicionalmente mal conocida e infravalorada a pesar de que el
manejo de este tipo de tratamiento requiere unos conocimientos precisos sobre la distribución
de líquidos corporales y la fisiopatología de los desequilibrios hidroelectrolíticos y ácidobásico.
El conocimiento de estos fundamentos permitirá adoptar las medidas oportunas en
cada circunstancia eligiendo de forma correcta el tipo de solución intravenosa y el ritmo de
administración adecuados para cada circunstancia.

II. DISTRIBUCIÓN DEL AGUA EN EL ORGANISMO:
El agua y electrolítos del organismo se encuentran distribuidos en distintos
compartimentos en constante equilibrio (Fig 1). El agua corporal total es aproximadamente de
600 mL/Kg con variaciones individuales, disminuyendo con la edad y el contenido adiposo.
El mayor volumen se encuentra en el líquido intracelular (VLIC) (400-450 mL/Kg),
mientras que el volumen de líquido extracelular (VLEC) abarca 150-200 mL/ Kg. De ellos,
60-65 mL/Kg representan el volumen sanguíneo (volemia), distribuido un 15% en el sistema
arterial y el 85% en el sistema venoso (capacitancia) siendo el volumen plasmático alrededor
de 30-35 ml / Kg. El resto constituye el volumen del líquido intersticial (VLI) que se sitúa
entre 120-160 ml/Kg.
Todos los compartimentos mencionados permanecen en estrecha relación e
interdependencia, teniendo un vínculo especial con los sistemas digestivo, respiratorio,
urinario y la piel, a través de los cuales se realizan los aportes y pérdidas fundamentales de
agua diariamente.

III. NECESIDADES Y PÉRDIDAS DIARIAS DE AGUA.
Las necesidades de agua del organismo varían con la edad, la actividad física, la
temperatura corporal o el estado de salud y son proporcionales a la tasa metabólica. El aporte
básico de agua al organismo se realiza mediante su ingesta a través del mecanismo de la sed.
Se requiere aproximadamente 1mlLde agua por cada kilocaloría consumida. La tasa
metabólica está relacionada a su vez con la superficie corporal, siendo en reposo de 1000
kcal/ m2/ día. En general los requerimientos diarios de agua pueden calcularse mediante la
regla 4-2-1, que está basada en la relación peso corporal/ tasa metabólica:
Peso Corporal Líquido mL/Kg/h
Entre 0-10 Kg 4
Entre 11-20 Kg 2
Más de 1 Kg 1
En un caso hipotético de un paciente de 65 Kg se derebrían administrar 40 mL/h por
los 10 primeros Kg de peso más 20 mL/h por los siguientes 10 Kg de peso y 45 mL/h por los
45 Kg restantes hasta alcanzar el peso total. En total 105 mL/h (40 + 20 + 65). Trabajando con
adultos esta fórmula se podría resumir: Se requieren 6 mL/Kg/h hasta 20 kg más 1 mL/Kg/h
por cada Kg de peso superior a 20.


Las pérdidas de agua se realizan a través de los sistemas digestivo, urinario, sudor (
pérdidas sensibles), y por el sistema respiratorio y la piel ( pérdidas insensibles). Por las heces
se pierden alrededor de 100 ml/día en condiciones normales, pudiendo alcanzar cifras muy
elevadas en caso de diarrea. Las pérdidas urinarias son la vía fundamental de eliminación de
agua, abarcando entre 1-2 mL/Kg/ h en condiciones normales. A través del sudor se pierde
una cantidad de agua variable, en un rango entre 1 a 2 L/día en la mayoría de los pacientes
ingresados, hasta 1 L/h en situaciones de ejercicio máximo. Las pérdidas insensibles de agua
son de un 25- 30 % de la total. Mediante la respiración se eliminan alrededor de 5mL/Kg/día,
variando según la humedad del gas inspirado, el volumen minuto y la temperatura corporal.
Las pérdidas cutáneas representan también un valor aproximado de 5mL/Kg/día.
Es conveniente señalar que en la fisiología del agua intervienen además innumerables
factores hormonales, nerviosos, vasculares, psicológicos, etc. cuya descripción en
profundidad excede los objetivos de este capítulo, pero que deben tenerse presente siempre en
la valoración integral del paciente que requiera fluidoterapia.

IV. MONITORIZACIÓN EN FLUIDOTERAPIA
El empleo de soluciones intravenosas implica riesgos importantes por lo que se
requiere una continua evaluación de la situación hemodinámica del enfermo valorando
especialmente la aparición de signos de sobreaporte de agua o electrolitos.
En la práctica, la monitorización puede efectuarse con tres elementos de juicio: Signos
clínicos, datos de Laboratorio y datos de monitorización invasiva.

     IV.1 SIGNOS CLÍNICOS
     Monitorizar en todos los pacientes cada cierto tiempo dependiendo de la severidad del
     estado clínico (frecuencia horaria, cada 2 – 4 horas, etc.)
     - Diuresis
     - Frecuencia cardíaca
     - Presión arterial
     - Frecuencia respiratoria
     - Temperatura
     - Nivel del estado de alerta
     - Son signos de hipervolemia:
     - ingurgitación yugular
     - crepitantes basales
    - aparición de tercer ruido cardíaco
- edemas, etc.
- Son signos de hipovolemia:
- sequedad de piel y mucosas
- pliegue cutáneo (+)
- ausencia / debilidad pulsos distales, etc.





IV.2 DATOS DE LABORATORIO
- Concentración plasmática de glucosa, urea, creatinina, sodio, potasio, cloro
- Gasometría arterial
- Relación N ureico / creatinina
- Osmolaridad plasmática
Los datos de más valor son los iones séricos y la osmolaridad.

IV.3 MONITORIZACIÓN INVASIVA: PARÁMETROS HEMODINÁMICOS
Los más utilizados:
- Presión venosa central (PVC)
- Presión capilar pulmonar de enclavamiento (PCP)
- Saturación de Hemoglobina de sangre venosa mixta SO2vm
- Gasto cardiaco
- Aporte de oxígeno (DO2)
- Consumo de oxígeno (VO2), etc.

En la práctica clínica, el parámetro mas facil de obtener es la PVC. Este parámetro nos
informa sobre la precarga ventricular derecha. Su valor normal oscila entre 3 – 7 cm de H2O.
Para la medición de la PVC no se precisan grandes y sofisticados medios. Basta la
canalización con catéter tipo “drum” y un sistema de medición PVC. La determinación de la
precarga ventricular derecha va a ser de gran utilidad para tomar decisiones referentes a la
fluidoterapia intravenosa.

En líneas generales, podemos guiarnos por las recomendaciones que se exponen en la
siguiente tabla:



La descripción detallada de los parámetros hemodinámicos escapa de la finalidad de este
capítulo. Recordar, simplemente, la importancia de evaluar clínica, analítica y
hemodinámicamente a todo enfermo crítico que es subsidiario de fluidoterapia IV, tomando la
actitud necesaria en cada caso, con la correcta selección del fluido según su patología y estado
hemodinámico.

V. INDICACIONES DE LA FLUIDOTERAPIA INTRAVENOSA
Las indicaciones de la fluidoterapia IV van a ser todas aquellas situaciones en las que
existe una severa alteración de la volemia, del equilibrio hifroelectrolítico o ambos, y que
requieren medidas de actuación urgentes encaminadas a restaurar la volemia y el equilibrio H















domingo, 22 de abril de 2012

FLUIDOTERAPIA


1. INTRODUCCIÓN


En el individuo adulto, el agua corporal total (ACT) se estima en un 60 % del peso corporal magro, que equivaldrían a unos 40 litros. Estos valores varían en función de la edad, sexo y hábito corporal. Así, éste valor puede ser mucho menor en un individuo obeso, alrededor del 50% del peso corporal, ya que el tejido adiposo contiene poca agua.

La fluidoterapia es una de las medidas terapéuticas más importante y más frecuentemente utilizada en la Medicina Intensiva.

El equilibrio del volumen y la composición de los líquidos corporales que constituyen el medio interno se mantiene por la homeostasis, que W.B.Cannon ( 1932 ) definió como “ el conjunto de mecanismos reguladores de la estabilidad del medio interno”. Si falla la regulación el equilibrio se altera.

El objetivo principal de la fluidoterapia es la recuperación y el mantenimiento del equilibrio hidroelectrolítico alterado.

El empleo de este tipo de tratamiento requiere unos conocimientos básicos sobre la fisiología del agua y los electrolitos, la clínica y la fisiopatología de los desequilibrios hidroelectrolíticos y acido-base puros y mixtos. Sólo disponiendo de esta información estaremos en condiciones de saber en cada situación clínica qué líquido se necesita, cuanto y cuando debe administrarse.

Finalmente plantearemos las principales controversias que aún persisten en este campo : coloides vs cristaloides, monitorización de constantes, transportadores de oxígeno, etcétera, cuya solución definitiva está más cerca cada día.

2. OBJETIVOS DE LA FLUIDOTERAPIA


Los objetivos de la fluidoterapia son mantener un estado adecuado de hidratación y de perfusión hística con equilibrio electrolítico. Se revisarán frecuente y cuidadosamente la exploración física y los parámetros de laboratorio.









3. COMPOSICION Y PROPIEDADES DE LAS DISTINTAS SOLUCIONES DISPONIBLES PARA LA TERAPEUTICA INTRAVENOSA


Existen muchas soluciones ya preparadas para la reposición de déficit de líquidos. Cuando el volumen plasmático se encuentra contraído como resultado de la simple pérdida de líquido y electrolitos, el defecto puede ser corregido en muchos pacientes por la simple reposición de soluciones cristaloides. Cuando las pérdidas iníciales son de naturaleza más compleja, por ejemplo en el shock hemorrágico, estas mismas soluciones también tienen la capacidad de mejorar transitoriamente la función cardiovascular. En estas condiciones, el volumen de solución cristaloidea requerida es mucho mayor que la cantidad del fluido perdido. Sin embargo, puede emplearse solución fisiológica como medida de emergencia inicial. Cuando el volumen plasmático es amenazado en forma crítica, el uso de soluciones coloidales es otra medida intermedia que resulta más eficaz que las soluciones cristaloides.

Así pues, en función de su distribución corporal, las soluciones intravenosas utilizadas en fluidoterapia pueden ser clasificadas en: 1) Soluciones cristaloides y 2) Soluciones coloidales.



SOLUCIONES CRISTALOIDES

Las soluciones cristaloides son aquellas soluciones que contienen agua, electrolitos y/o azúcares en diferentes proporciones y que pueden ser hipotónicas, hipertónicas o isotónicas respecto al plasma



Soluciones cristaloides isoosmóticas

Dentro de este grupo las que se emplean habitualmente son las soluciones salina fisiológica ( ClNa 0.9 % ) y de Ringer Lactato que contienen electrolitos en concentración similar al suero sanguíneo y lactato como buffer.

- Salino 0.9 % ( Suero Fisiológico )

La solución salina al 0.9 % también denominada Suero Fisiológico, es la sustancia cristaloide estándar, es levemente hipertónica respecto al líquido extracelular y tiene un pH ácido. La relación de concentración de sodio (Na+) y de cloro (Cl ) que es 1/1 en el suero fisiológico, es favorable para el sodio respecto al cloro ( 3/2 ) en el líquido extracelular ( Na+ > Cl ).

- Ringer Lactato

La solución de Ringer Lactato contiene 45 mEq/L de cloro menos que el suero fisiológico, causando sólo hipercloremia transitoria y menos posibilidad de causar acidosis .Y por ello, es de preferencia cuando debemos administrar cantidades masivas de soluciones cristaloides.

Solución Salina Hipertónica

Las soluciones hipertónicas e hiperosmolares han comenzado a ser más utilizados como agentes expansores de volumen en la reanimación de pacientes en shock hemorrágico . Ciertos trabajos demuestran que el cloruro sódico es superior al acetato o al bicarbonato de sodio en determinadas situaciones. Por otro lado, el volumen requerido para conseguir similares efectos, es menor con salino hipertónico que si se utiliza el fisiológico normal isotónico

Entre sus efectos beneficiosos, además del aumento de la tensión arterial, se produce una disminución de las resistencias vasculares sistémicas, aumento del índice cardíaco y del flujo esplénico .


Soluciones de comportamiento similar al agua

Se clasifican en glucídicas isotónicas o glucosalinas isotónicas.

Suero glucosado al 5 %

Es una solución isotónica ( entre 275-300 mOsmol/L ) de glucosa, cuya dos indicaciones principales son la rehidratación en las deshidrataciones hipertónicas ( por sudación o por falta de ingestión de líquidos ) y como agente aportador de energía.

Suero glucosado al 10 %, 20 % y 40 %

Las soluciones de glucosa al 10 %, 20 % y 40 % son consideradas soluciones glucosadas hipertónicas, que al igual que la solución de glucosa isotónica, una vez metabolizadas desprenden energía y se transforma en agua. A su vez, y debido a que moviliza sodio desde la célula al espacio extracelular y potasio en sentido opuesto, se puede considerar a la glucosa como un proveedor indirecto de potasio a la célula.

Las contraindicaciones principales serían el coma addisoniano y la diabetes.

Soluciones glucosalinas isotónicas

Las soluciones glucosalinas ( 314 mOsm/L ) son eficaces como hidratantes y para cubrir la demanda de agua y electrolitos. Cada litro de infusión de suero glucosalino aporta 35 gramos de glucosa ( 140 kcal ), 60 mEq de sodio y 60 mEq de cloro.

Soluciones de uso en situaciones especificas

Dentro de dichas soluciones de utilización en situaciones específicas, citaremos únicamente las de uso más habitual.

Soluciones alcalinizantes

Estas soluciones se utilizan en aquellas situaciones que exista o se produzca una acidosis metabólica.

Soluciones acidificantes

El cloruro amónico 1/6 Molar es una solución isotónica (osmolaridad = 334), acidificante, de utilidad en el tratamiento de la alcalosis hipoclorémica.

. Soluciones de reemplazamiento específico

A) Solución de reemplazamiento gástrico de Cooke y Crowlie,

B) Solución reemplazante intestinal de lactato de potasio de Darrow (Na+, Cl-, lactato y K+ ),

En principio ambos tipos de soluciones se dosifican restituyendo mL a mL la pérdida gástrica o intestinal, según proceda.

SOLUCIONES COLOIDALES

Las soluciones coloidales contienen partículas en suspensión de alto peso molecular que no atraviesan las membranas capilares, de forma que son capaces de aumentar la presión osmótica plasmática y retener agua en el espacio intravascular. Así pues, las soluciones coloidales incrementan la presión oncótica y la efectividad del movimiento de fluídos desde el compartimento intersticial al compartimento plasmático deficiente. Es lo que se conoce como agente expansor plasmático. Producen efectos hemodinámicos más rápidos y sostenidos que las soluciones cristaloides, precisándose menos volumen que las soluciones cristaloides, aunque su coste es mayor.


Las características que debería poseer una solución coloidal son:

1. Tener la capacidad de mantener la presión osmótica coloidal durante algunas horas.

2. Ausencia de otras acciones farmacológicas.

3. Ausencia de efectos antigénicos, alergénicos o pirogénicos.

4. Ausencia de interferencias con la tipificación o compatibilización de la sangre.

5. Estabilidad de almacenamiento y bajo amplias variaciones de temperatura ambiente.

6. Facilidad de esterilización

7. Características de viscosidad adecuadas para la infusión 25, 2 . (Tabla 7)

Podemos hacer una clasificación de los coloides como: 1) Soluciones coloidales naturales y 2) Soluciones coloidales artificiales

Soluciones Coloidales Naturales

Albumina

La albúmina se produce en el hígado y es responsable de aproximadamente un 70-80 % de la presión oncótica del plasma , constituyendo un coloide efectivo.

Entre los posibles beneficios que puede aportar la albúmina, está su capacidad para hacer disminuir los edemas, mejorando la presión oncótica vascular y evitando asi, tanto en los pulmones como en otros órganos, la producción de edema. Estudios recientes han demostrado, que la albúmina también es capaz de barrer los radicales libres que circulan por el plasma. En la actualidad, la única indicación que privilegia esta sustancia frente a los coloides artificiales, es la hipovolemia en la mujer embarazada, por la posible reacción anafiláctica fetal a los coloides artificiales.

Fracciones Proteicas de Plasma Humano

Las fracciones proteicas del plasma, al igual que la albúmina, se obtiene por fraccionamientos seriados del plasma humano. La fracción proteica debe contener al menos 83 % de albúmina y no más de un 1 % de g-globulina, el resto estará formado por a y b-globulinas. Esta solución de fracciones proteicas está disponible como solución al 5 % en suero fisiológico y estabilizado con caprilato y acetiltrifosfanato sódico. Y al igual que la albúmina, estas soluciones son pasteurizadas a 60 ºC durante 10 horas.

Esta solución de fracciones proteicas tiene propiedades similares a la albúmina. La principal ventaja de esta solución consiste en su fácil manufacturación y la gran cantidad de proteínas aportadas. Sin embargo es más antigénica que la albúmina, ya que algunos preparados comerciales contienen concentraciones bajas de activadores de la precalicreína (fragmentos del factor de Hageman), que pueden ejercer una acción hipotensora capaz de agravar la condición por la cual se administran estas proteínas plasmáticas.



Soluciones Coloidales Artificiales

Dextranos

Hidroxietil-almidón ( HEA )

Pentaalmidón

Derivados de la gelatina


4. INDICACIONES DE LA FLUIDOTERAPIA

Las indicaciones más importantes de la fluidoterapia o sueroterapia se recogen en el siguiente cuadro:

· Shock hipovolémico

· Depleción de fluído extracelular

· Depleción acuosa

· Depleción salina

· Hipernatremia


5. PAUTA DE LA FLUIDOTERAPIA

Es preciso tener en cuenta el volumen que precisa el paciente, el aporte electrolítico que requiere y si necesita aporte calórico.

Volumen:

Para calcular el volumen es preciso conocer las pérdidas (diuresis, drenajes, diarreas, sonda nasogástrica, pérdidas insensibles...) y las entradas (alimentación oral, medicación intravenosa, nutrición parenteral, hemoterapia...).

Las pérdidas insensibles se calculan multiplicando la cantidad de 0,6 mililitros por kilogramo de peso y hora.

En un paciente febril se incrementan las pérdidas en un 20% por cada grado centígrado por encima de la temperatura correcta.

Para poder realizar estos cálculos se utiliza el balance hídrico (sumando las entradas y restando las salidas, y valorando su valor positivo o negativo) y realizando un seguimiento del peso del paciente.

Aporte electrolítico:

El cálculo del aporte electrolítico se puede determinar mediante la medición de la diuresis y la solicitud de ionograma de orina. La multiplicación de los valores de sodio y potasio del resultado del ionograma en orina por el volumen de diuresis diaria nos proporciona las pérdidas de sodio y potasio en 24 horas.

El cálculo del aporte electrolítico se realiza en relación al sodio para escoger el suero más adecuado, mientras que el potasio y otros electrolitos serán añadidos como aditivos.


Si se producen pérdidas extraordinarias por sondas o drenajes (superiores a 500 mililitros) deben incluirse en el cálculo del volumen y del aporte electrolítico.

Aporte calórico:

Para realizar el cálculo del aporte calórico puede utilizarse la siguiente fórmula:

Requerimientos calóricos no protéicos

Aproximado: 25 Kcal/kg/día

Por sexo:

- Hombres: 66,67 + (13,8 x peso (kg)) + (5 x talla (cm)) - (6,8 x edad)

- Mujeres: 66,51 + (9,6 x peso (kg)) + (1,85 x talla (cm)) - (4,7 x edad)


Se multiplicará el resultado por el factor más adecuado a cada caso:

Actividad:

- Encamado x 1,2

- No encamado x 1,3

Enfermedad:

- Fiebre x 1,1 x cada aumento de un grado centígrado de temperatura.

- Inanición x 0,9

- Cirugía x 1,2

- Sepsis x 1,3

- Politrauma x 1,5

Quemados:

- menor de 50% x 1,7

- 50%-70% x 1,8

- mayor de 70% x 2


6. COMPLICACIONES DE LA FLUIDOTERAPIA

EDEMA PULMONAR

Los pulmones poseen una serie de características intrínsecas que le permiten defenderse y prevenir el desarrollo de Edema Pulmonar, especialmente si las condiciones de permeabilidad microvascular pulmonar son normales. Entre estas características podemos incluir :

-Gradiente oncótico plasma-intersticio.

-Gran capacitancia linfática.

-Integridad de las membranas microvasculares de los capilares pulmonares.

-Baja presión hidrostática vascular.

A pesar de estos mecanismos de seguridad, el desarrollo de edema pulmonar y SDRA en pacientes que se encuentran en situación de shock, es un hecho frecuente.

EFECTOS MESENTERICOS

Basándonos en los hechos descritos, podemos decir que el edema intestinal puede ser resultado de la infusión masiva de sueros, con su subsecuente efecto sobre el metabolismo de la albúmina y el desarrollo de diarreas e íleo. También puede influir la disbacteriosis intestinal que se produce durante la sepsis, por lo que una monitorización exhaustiva de la presión oncótica del plasma y una nutrición correcta de los estados de hipoproteinemia, pueden ser de ayuda en la corrección de las disfunciones gastrointestinales.

EDEMA MIOCARDICO

Ante una situación en la que es imprescindible la administración masiva de líquidos, lo primero que hay que tener en cuenta es la posible sobrecarga intravascular que vamos a provocar y sus consecuencias inmediatas.Tras una sobrecarga de líquidos el miocardio por sí mismo puede favorecer la formación de edemas , ya que debido a este incremento de volumen el corazón ve afectada tanto la contractilidad miocárdica como su compliance, que se ven disminuídas.

EDEMAS CUTANEOS

Estudios diferentes, demuestran los marcados aumentos del movimiento de líquido transvacular sistémico fuera de los capilares hacia el intersticio, después de la infusión de líquidos que diluyan las proteínas plasmáticas. A tener en cuenta, que estos edemas hísticos no sólo van a ser un problema estético; ya que por un lado, provocan una disminución de la tensión de oxígeno a ese nivel y por lo tanto, una hipoxia que influye adversamente en la curación de lesiones, y por otro, se producen efracciones en una piel más frágil, que facilitan la producción de úlceras y las infecciones de éstas, por el decremento de la inmunidad celular.

EFECTOS SOBRE EL SNC

Los efectos de la administración de fluídos sobre el sistema nervioso central se centran principalmente en la posibilidad de desarrollar edema cerebral. Para defenderse de esta posibilidad el cerebro posee 2 mecanismos de protección: la barrera hematoencefálica y la autorregulación vascular.

El edema cerebral es el resultado de un desequilibrio entre las presiones hidrostáticas y oncótica en el lecho cerebral, y principalmente debidas a disminuciones críticas de la POC. Por todo ello, ante un paciente en shock que debamos infundir grandes cantidades de líquidos, aparte de valorar el daño en sí que lo ha producido, debemos considerar también el posible daño cerebral y la integridad de la barrera hematoencefálica.


sábado, 21 de abril de 2012

AGUA EN ÁFRICA

África cuenta con agua para 300 millones de personas, según estudio

Volumen de agua de los acuíferos sería cien veces superior a la cantidad que existe en la superficie.
Un mapa geológico elaborado por científicos británicos determinó que África cuenta con una reserva subterránea de agua de medio millón de kilómetros cúbicos aproximadamente.
El estudio revela que las mayores reservas se encuentran al norte de África, entre Libia, Argelia y Chad, en la costa de Mauritania, Senegal, Gambia y parte de Guinea-Bissau, así como en Congo y en la región limítrofe entre Zambia, Angola, Namibia y Botsuana.
"Estas grandes bolsas de agua podrían aliviar la situación de más de 300 millones de africanos que no disponen de agua potable, así como mejorar la productividad de los cultivos", afirmó Alan MacDonald, experto que lideró la investigación.
Según el informe, el volumen de agua de los acuíferos sería cien veces superior a la cantidad que existe en la superficie.


BALANCE HIDRICO


Los líquidos y electrólitos se encuentran en el organismo en un estado de equilibrio dinámico que exige una composición estable de los diversos elementos que son esenciales para conservar la vida. El cuerpo humano está constituido por agua en un 50 a 70% del peso corporal, en dos compartimientos: Intracelular, distribuido en un 50% y extracelular, en un 20%, a su vez éste se subdivide, quedando en el espacio intersticial 15%, y 5% se encuentra en el espacio intravascular en forma de plasma. En cuanto a los electrólitos están en ambos compartimientos, pero principalmente en el extracelular: Sodio, calcio y cloro. Los intracelulares: Potasio, magnesio fosfato y sulfato. Los electrólitos poseen una carga eléctrica y se clasifican en aniones, los de carga + y cationes los de carga -, cuando éstos se ionizan (atraen sus cargas + y - se combinan formando compuestos neutros) o se disocian (se separan recuperando su carga eléctrica) se denominan iones.

El balance de líquidos está regulado a través de los riñones, pulmones, piel, glándulas suprarrenales, hipófisis y tracto gastrointestinal a través de las ganancias y pérdidas de agua que se originan diariamente. El riñón también interviene en el equilibrio ácido-base, regulando la concentración plasmática del bicarbonato. El desequilibrio o alteraciones de los líquidos y electrólitos pueden originarse por un estado patológico preexistente o un episodio traumático inesperado o súbito, como diarrea, vómito, disminución o privación de la ingesta de líquidos, succión gástrica, quemaduras, fiebre, hiperventilación, entre otras. El indicador para determinar las condiciones hídricas de un paciente es a través del balance de líquidos, para lo cual se tendrán que considerar los ingresos y egresos, incluyendo las pérdidas insensibles. La responsabilidad del personal de enfermería para contribuir a mantener un equilibrio de líquidos en el organismo del paciente es preponderante, ya que depende primordialmente de la precisión con la cual realice este procedimiento, que repercutirá en el tratamiento y recuperación de su paciente.




Concepto

Es la relación cuantificada de los ingresos y egresos de líquidos, que ocurren en el organismo en un tiempo específico, incluyendo pérdidas insensibles.

Para calcular el aporte de líquido se requiere precisar si se quiere un balance positivo, negativo o equilibrado. Esto varía según el peso, días de vida y condición clínica del paciente.




HORMONAS QUE REGULAN EL BALANCE HIDROELECTROLÍTICO 
  • Hormona antidiurética (ADH) 
Se secreta cuando hay:

       - Hiperosmolaridad

       - Hipotensión (barorreceptores)

Produce reabsorción de agua
  • Angiotensina II 
Se estimula por hipotensión

Aumenta la presión arterial:

            - Reabsorción de sodio y agua

            - Vasoconstricción
  • Aldosterona 
Se secreta en hipotensión

Produce reabsorción de sodio y agua
  • Péptido auricular natriurético (PAN) 
Se secreta cuando aumenta la presión arterial

Provoca eliminación de sodio y agua

Objetivos 

Controlar los aportes y pérdidas de líquidos en el paciente, durante un tiempo determinado, para contribuir al mantenimiento del equilibrio hídrico. Planear en forma exacta el aporte hídrico que reemplace las pérdidas basales, previas y actuales del organismo.


Equipo 

Hoja de control de líquidos conteniendo los siguientes datos:

• Nombre del paciente.

• Fecha y hora de inicio del balance.

• Sección de ingresos que específica la vía oral y parenteral.

• Sección de egresos que permite el registro de Los valores de pH son importantes para detectar el balance hídrico. Orina, heces, vómitos, drenajes, etc.

• Columna para totales de ingresos, egresos y balance parcial por turno.

• Espacio para balance total de 24 horas.

• Probeta o recipiente graduados para la cuantificación de los egresos.

• Recipientes para alimentación graduados.

• Báscula.

• Guantes desechables. 



Procedimiento 

  • Identificar al paciente y corroborar en el expediente clínico. 
  • En caso de adultos, instruir al paciente y familiar sobre este procedimiento para no omitir ninguna ingesta o excreta. 
  • Pesar al paciente al iniciar el balance y diariamente a la misma hora. 
  • Cuantificar y registrar la cantidad de líquidos que ingresan al paciente, como: 

         - Líquidos ingeridos (orales).

         - Líquidos intravenosos.

         - Soluciones.

         - Sangre y sus derivados.

         - NPT.

         - Medicamentos administrados, sobre todo al diluirlos.

         - Alimentación por sonda (solución para irrigarla).

         - Líquidos utilizados para irrigación (enemas, entre otros).

         - Soluciones de diálisis

  • Cuantificar y registrar la cantidad de líquidos que egresan del paciente, como: 

        - Diuresis (a través de sonda foley u orinal).

         - Drenajes por sonda nasogástrica.

        - Drenaje de heridas.

        - Evacuaciones.

        - Vómitos.

        - Hemorragias.

       - Drenajes por tubos de aspiración.

       - Pérdidas insensibles.

  • En caso de niños colocar bolsa colectora, si no es posible, pesar el pañal. 
  • En caso de adultos, instruir al paciente y familiar sobre este procedimiento para no omitir ninguna ingesta o excreta. 
  • Una vez finalizado cada turno, sumar las cantidades y anotar los totales del turno. 
  • Calcular pérdidas insensibles:



DESEQUILIBRIO DE LÍQUIDOS

Existe el desequilibrio de líquidos cuando los fenómenos compensatorios del organismo no pueden mantener la homeostasia. La actuación va dirigida a evitar una grave deficiencia y prevenir el desarrollo de una sobrecarga de líquidos.

Para ello, es necesario llevar un exacto de ingresos y egresos, pérdidas insensibles, con lo cual ayudará a identificar los problemas que se produzcan en el equilibrio de líquidos.

DÉFICIT DE LÍQUIDOS
La hipovolemia es un déficit del líquido extracelular, dicha deficiencia de volumen de líquidos es una consecuencia de la pérdida de agua y electrólitos.

Etiología

Las causas que podemos mencionar son vómito, diarrea, drenajes fistulosos, aspiración gastrointestinal, abuso de diuréticos, diaforesis, ascitis y quemaduras, entre otros.

Signos y síntomas

Sequedad de mucosas, pérdida de peso (del 2% = déficit ligero, del 5% = déficit moderado y del 8% = grave), hipotensión y aumento de la frecuencia cardiaca, hipotermia (sin embargo, si existe hipernatremia, aumenta la temperatura), oliguria entre otros, los signos y síntomas se presentan según el déficit.

EXCESO DE LÍQUIDOS

El exceso de líquido o hipervolemia es una expansión de volumen en el compartimiento extracelular. Se debe al aumento del contenido total de sodio orgánico, dando lugar al incremento del agua orgánica total.

Etiología

La hipervolemia se produce cuando el riñón recibe un estímulo prolongado para ahorrar sodio y agua como consecuencia de la alteración de los mecanismos compensadores, como sucede en la cirrosis hepática, la insuficiencia cardiaca congestiva, la insuficiencia renal con disminución de la excreción de sodio y agua, abuso de líquidos intravenosos que contienen sales de sodio o medicamentos con elevado contenido de sodio. La hipervolemia puede ocasionar insuficiencia cardiaca congestiva y edema pulmonar.

Signos y síntomas
Edema, hipertensión, fiebre (por el aumento de sodio), entre otros.

domingo, 15 de abril de 2012

SUSTANCIAS CONTAMINANTES DEL AGUA



Hay un gran numero de contaminantes del agua que se pueden clasificar de muy diferentes maneras. Una posibilidad bastante usada es agruparlos en los siguientes ocho grupos:


·  Microorganismos Patógenos.
Son los diferentes tipos de bacterias, virus, protozoos y otros organismos que transmiten enfermedades como el cólera, tifus, gastroenteritis diversas, hepatitis, etc. En los países en vías de desarrollo las enfermedades producidas por estos patógenos son uno de los motivos más importantes de muerte prematura, sobre todo de niños.
Normalmente estos microbios llegan al agua en las heces y otros restos orgánicos que producen las personas infectadas. Por esto, un buen índice para medir la salubridad de las aguas, en lo que se refiere a estos microorganismos, es el número de bacterias coliformes presentes en el agua. La OMS (Organización Mundial de la Salud) recomienda que en el agua para beber haya 0 colonias de coliformes por 100 ml de agua.





·  Desechos Orgánicos.
Son el conjunto de residuos orgánicos producidos por los seres humanos, ganado, etc. Incluyen heces y otros materiales que pueden ser descompuestos por bacterias aeróbicas, es decir en procesos con consumo de oxígeno. Cuando este tipo de desechos se encuentran en exceso, la proliferación de bacterias agota el oxígeno, y ya no pueden vivir en estas aguas peces y otros seres vivos que necesitan oxígeno. Buenos índices para medir la contaminación por desechos orgánicos son la cantidad de oxigeno disuelto, OD, en agua, o la DBO (Demanda Biológica de oxigeno).










·  Sustancias Químicas Inorgánicas.
En este grupo están incluidos ácidos, sales y metales tóxicos como el mercurio y el plomo. Si están en cantidades altas pueden causar graves daños a los seres vivos, disminuir los rendimientos agrícolas y corroer los equipos que se usan para trabajar con el agua.











·  Nutrientes Vegetales Inorgánicos.
Nitratos y fosfatos son sustancias solubles en agua que las plantas necesitan para su desarrollo, pero si se encuentran en cantidad excesiva inducen el crecimiento desmesurado de algas y otros organismos provocando la eutrofización de las aguas. Cuando estas algas y otros vegetales mueren, al ser descompuestos por los microorganismos, se agota el oxígeno y se hace imposible la vida de otros seres vivos. El resultado es un agua maloliente e inutilizable.




·  Compuestos Orgánicos.
Muchas moléculas orgánicas como petróleo, gasolina, plásticos, plaguicidas, disolventes, detergentes, etc..., acaban en el agua y permanecen, en algunos casos, largos períodos de tiempo, porque, al ser productos fabricados por el hombre, tienen estructuras moleculares complejas difíciles de degradar por los microorganismos.










·  Sedimentos Y Materiales Suspendidos.
Muchas partículas arrancadas del suelo y arrastradas a las aguas, junto con otros materiales que hay en suspensión en las aguas, son, en términos de masa total, la mayor fuente de contaminación del agua. La turbidez que provocan en el agua dificulta la vida de algunos organismos, y los sedimentos que se van acumulando destruyen sitios de alimentación o desove de los peces, rellenan lagos o pantanos y obstruyen canales, rías y puertos.










·  Sustancias Radiactivas.
Isótopos radiactivos solubles pueden estar presentes en el agua y, a veces, se pueden ir acumulando a los largo de las cadenas tróficas, alcanzando concentraciones considerablemente más altas en algunos tejidos vivos que las que tenían en el agua.






·  Contaminación Térmica.
El agua caliente liberada por centrales de energía o procesos industriales eleva, en ocasiones, la temperatura de ríos o embalses con lo que disminuye su capacidad de contener oxígeno y afecta a la vida de los organismos